Tetrahedron Letters, Vol.25, No.26, pp 2805-2808, 1984 0040-4039/84 \$3.00 +.00 Printed in Great Britain ©1984 Pergamon Press Ltd.

THE PREPARATION OF 1,4-DICARBONYL COMPOUNDS BY PHOTOREACTION OF KETONES IN THE PRESENCE OF OXIDANTS

Michiharu Mitani*, Mamoru Tamada, Shin-ichi Uehara, and Kikuhiko Koyama Department of Synthetic Chemistry, Faculty of Engineering, Shinshu University Wakasato, Nagano 380, Japan

Abstract: Phenyl alkyl ketones were photo-irradiated in the presence of Cr(VI) or Mn(VII) oxidants to yield 1,4-dicarbonyl compounds regiospecifically while 2-octanone gave a regioisomeric mixture of 2,5-, 2,6-, and 2,7-octadiones.

Several substrates have been known to trap the biradicals generated in the Norrish type II reaction of ketones, introducing the new substituents at γ -positions of the original carbonyl groups such as a deuterium with a deuterated thiol,¹⁾ an alkyl group with an olefin,²⁾ and a selenyl group with a seleno-ketone.³⁾ Although oxygen has been reported to give a γ -hydroperoxyketone,⁴⁾ the introduction of a carbonyl group with oxidants has not been so far found to our knowledge.⁵⁾ We wish here to report an one-step synthesis of 1,4-di-carbonyl compounds which is brought about by oxidation of 1,4-diradical intermediates generated from ketones under the photo-irradiation.

$$\begin{array}{c} \underset{\text{RC}}{\overset{\text{O}}{\text{(CH}_2)}}_2 \underset{2}{\overset{\text{CH}_2}{\text{R}'}} \xrightarrow{h_{\mathcal{V}}} \end{array} \xrightarrow{} \begin{array}{c} \underset{\text{RC}}{\overset{\text{O}}{\text{(CH}_2)}}_2 \underset{2}{\overset{\text{CHR'}}} \xrightarrow{\text{oxidant}} \xrightarrow{\overset{\text{O}}{\text{RC}}} \underset{\text{RC}}{\overset{\text{O}}{\text{(CH}_2)}} \underset{2}{\overset{\text{O}}{\text{CR}}} \xrightarrow{} \end{array}$$

Photoreaction of hexanophenone (<u>1</u>) was performed in $aq.CH_3CN$ in the presence of oxidants under a nitrogen atmosphere using a high-pressure Hg lamp to afford 1-phenylhexane-1,4-dione (<u>2</u>), the expected 1,4-dicarbonyl compound, although, in the case of $K_2Cr_2O_7$ or KMnO₄ under a neutral condition, the conversion was very low possibly because of appearance of a deposit around a reaction vessel. An aq.acetonitrle solution containing <u>1</u>, hydrochloric acid and an oxidant, in turn, was irradiated under a nitrogen atmosphere with a low-

2805

Run ^a	Oxidant	Hg lamp	<u>l</u> /Oxidant	HC1/Oxidant	Conversion ^b	Yie	ld(%) ^{b,c}
			mole ratio	mole ratio	(%)	2	PhCOCH ₃
1	K2Cr207	high	0.83	0	17	18	29
2	K2Cr207	high	0.56	5.2	100	15	14
3	KMnO4	high	0.67	0	10	60	trace
4	KMnO4	high	0.50	4.0	10	trace	42
5	$NaIO_4$	high	0.77	0	100	trace	6
6	^K 2 ^{Cr} 2 ^O 7	low	0.28	4.6	24	53	15
7	K ₂ Cr ₂ O ₇	low	0.56	4.5	97	39	22
8	^K 2 ^{Cr} 2 ^O 7	low	0.53	2.2	85	82	9
9 ^d	K ₂ Cr ₂ O ₇	low	1.1	2.2	97	49	36
10	KMnO ₄	low	0.50	1.7	45	71	19
11	KMnO4	low	0.50	4.0	17	66	25
12	Cr03	low	0.48	1.8	100	64	35
13	K ₂ Cr ₀₄	low	0.50	1.9	77	40	40

Table 1. Photoreaction of <u>1</u> in the presence of oxidants

^aIrradiation time=24 hr. ^bDetermined by VPC. ^CBased on <u>l</u> consumed. ^dIrradiation time=17.5 hr.

pressure Hg lamp. In the case of KMNO_4 as an oxidant, although 2 was produced in moderate yields, conversions of <u>1</u> were low possibly because, at low acid concentration, light transmission decreases due to appearance of the deposit around a reaction vessel under photo-irradiation and, at high acid concentration, KMnO_4 may operate strongly as a quencher (Table 1, run 10 and 11). $\text{K}_2\text{Cr}_2\text{O}_7$ was proved to be the better oxidant for the production of <u>2</u> than KMnO_4 . The effects of the concentrations of $\text{K}_2\text{Cr}_2\text{O}_7$ and HCl on the yield of <u>2</u> were investigated to reveal that the increase of the former and the decrease of the latter bring about the elevation of the yield of <u>2</u> under the reduction of the yield of acetophenone, the normal Norrish type II product, although the conversion of <u>1</u> is diminished (Table 1, runs from 6 to 9). Thus, we decided the mole ratios of <u>1</u> and HCl to $\text{K}_2\text{Cr}_2\text{O}_7$ suitable for the formation of <u>2</u> as 0.5 and 2.2, respectively (Table 1, run 8). K_2CrO_4 and CrO_3 as Cr(VI) oxidants appeared to afford <u>2</u> comparably with $K_2Cr_2O_7$. These results under irradiation with highand low-pressure Hg lamps are shown in Table 1. Some aryl ketones were irradiated under the same condition as that in run 8 of Table 1 except for irradiation time, and the results are revealed in Table 2. When butyrophenone in which

Aryl ketone	Conversion ^a	Product ^b	Yield ^a
Ph-C-(CH2)4CH3	95 %	Ph-C-(CH ₂) ₂ -C-CH ₂ CH ₃	67 %
Ph-C-(CH2)3CH3	90 %	$Ph-C-(CH_2)_2-C-CH_3$	71 %
Ph-C-CH-(CH2)2CH3	95 %	о сн _з 0 II I 3 II Ph-C-CH-CH ₂ -C-CH ₃	52 %
Ph-C-CH ₂ -	100 % ^C	Ph-C-CH ₂	54 % ^C
Ph-C-	50 %		62 %
Ph-C-	70 %	Ph-C - C	57 %
OO ^{-CO-(CH₂)} 4 ^{CH} 3	95 %	OCC-(CH ₂) ₂ -C-CH ₂ CH ₃	45 %

Table 2.	Photoreaction	of	aryl	ketones	in	the	presence	of	^K 2 ^{Cr} 2 ⁰ 7	
----------	---------------	----	------	---------	----	-----	----------	----	---	--

^aIrradiation time=30 hr. Determined after isolation by a column-chromatography. ^bIdentified by NMR, IR, and MS spectra. ^CIrradiation time=16 hr.

the γ -position of a carbonyl group is primary was subjected to photoreaction, conversion was low and 3-benzoyl propionaldehyde or 3-benzoyl propionic acid, the expected oxidation product, could not be detected. The photoreaction of β -naphthyl pentyl ketone afforded the expected 1,4-dicarbonyl compound while, in the case of α -naphthyl pentyl ketone, conversion was low and the 1,4-dicarbonyl compound could not be detected.

Next, the photooxidation of alkyl ketone was also investigsted. 2-Octanone

2808

was irradiated in an aq.HCl-CH₃CN solution containing $K_2Cr_2O_7$ under a nitrogen atmosphere with a high- or low-pressure Hg lamp to afford a mixture of regioisomeric dicarbonyl compounds 3, 4, and 5 in only low yields. The photoreaction of 2-octanone in the presence of KMnO₄ instead of $K_2Cr_2O_7$ resulted also in formation of a mixture of 3, 4, and 5.

$$\begin{array}{c} c_{H_{3}C}(c_{H_{2}})_{5}c_{H_{3}} & \xrightarrow{h_{v}} \\ \hline \kappa_{2}c_{r_{2}}o_{7} \text{ or } KMnO_{4} \end{array} \xrightarrow{c_{H_{3}C}(c_{H_{2}})_{2}C(c_{H_{2}})_{2}c_{H_{3}} + c_{H_{3}C}(c_{H_{2}})_{3}C(c_{H_{2}})_$$

Since the molar n, π^* absorption coefficient of 2-octanone is low relative to that of aromatic ketones, the photoreaction of oxidants might preferentially occur to generate some radical species which in turn abstract a hydrogen at random from alkyl chain of the ketone followed by oxidation with oxidants. Photoreaction of a solution containing 2-octanone and $K_2Cr_2O_7$ was performed in the presence of a sensitizer such as benzene or anisole with expectation to raise the fraction of light absorbed by 2-octanone. 2-Octanone, however, was only recovered and dicarbonyl compounds were not produced at all.

References and Note

- P. J. Wagner and R. G. Zepp, J. Am. Chem. Soc., <u>94</u>, 288 (1972); P. J. Wagner,
 P. A. Kelso, and R. G. Zepp, ibid., <u>94</u>, 7480 (1972).
- 2) M. Hamity and J. C. Scaiano, J. Photochem., <u>4</u>, 229 (1975).
- 3) J. C. Scaiano, J. Am. Chem. Soc., 99, 1494 (1977).
- 4) R. D. Small, Jr., and J. C. Scaiano, ibid., <u>100</u>, 4512 (1978).
- 5) The biacetyl-sensitized photochemical decomposition of valerophenone diperoxide has been reported to give 1-phenylpentane-1,4-dione besides acetophenone; Y. Ito, T. Matsuura, and H. Yokoya, ibid., <u>101</u>, 4010 (1979). (Received in Japan 7 March 1984)